<A NVIDIA

NVIDIA Developer Tools

Andrew Gontarek, Software Engineer | ALCF Developer Sessions 11/30/2022

Introduction to the NVIDIA debugging toolchest

Overview
- NVIDIA HPC SDK » Bundled with the HPC SDK is a debugging toolchest
- A comprehensive suite of compilers, libraries and tools - CUDA-GDB
for HPC Interactive thread-based debugger
* More info: https://developer.nvidia.com/hpc-sdk - Compute Sanitizer
* Provided by nvhpc module - Functional correctness checking suite

* nvhpc/21.9 is default on Polaris

DEVELOPMENT ANALYSIS
. Core Math Communication
nvcc nvc cuBLAS cuTENSOR
MPI
SHME
UCX M
Thrust cuSPARSE | cuSOLVER SHARP HCOLL Systems

NVSHMEM
Compute Device
cuFFT cuRAND
NCCL

Programming
Models

HPC-X

Standard C++ & Fortran

OpenACC & OpenMP

2 <ANVIDIA I

https://developer.nvidia.com/hpc-sdk

CUDA-

IeWw

Overv

GDB

g
0
>
C
)
V

3

Overview: CUDA-GDB

Built on the familiar GDB debugger!
Fase-of-use: Users already familiar with gdb
GPU debugging provides a similar logical experience
Existing C/C++/Fortran support
Seamless experience between host (CPU) and device (GPU) debugging
Support for CUDA/OptiX/OpenACC/OpenMP/etc source level device code
Support for SASS disassembly
Various command extensions unique to CUDA-GDB

Interactive CLI based tool

Provides reactive debugging of CUDA kernels

CUDA Runtime errors
Debugging when exceptions occur
Logic errors producing incorrect answers

Post-mortem debugging with corefiles
Coredump capture enabled via environment variables

4 NVIDIA.

Overview: CUDA-GDB

Quickstart

On Polaris
* Provided by PATH from module nvhpc/21.9 (default)

Latest documentation: https://docs.nvidia.com/cuda/cuda-gdb/index.html

Tips and Tricks: https://docs.nvidia.com/cuda/cuda-gdb/index.html#advanced-settings

Getting help: https://forums.developer.nvidia.com/c/development-tools/cuda-developer-tools/cuda-gdb/

5 <A NVIDIA. I

https://docs.nvidia.com/cuda/cuda-gdb/index.html
https://docs.nvidia.com/cuda/cuda-gdb/index.html#advanced-settings
https://forums.developer.nvidia.com/c/development-tools/cuda-developer-tools/cuda-gdb/

Overview: CUDA-GDB

Quickstart

» Recompile application for debugging - HPC features of interest (cont.)

* When compiling with nvcc: » Limited CUDA-GDB support for CUDA Multi Process
Server (MPS)

e https://docs.nvidia.com/deploy/mps/index.html#topic_3 3 _
6 1

_ « Use CUDA_VISIBLE_DEVICES env var to select which

+ Provide —g for host (CPU) debugging
+ Provide —G for device (GPU) debugging

+ Using —1ineinfo will allow debugging of optimized code GPUs are available to the application
* Lacks .debug._info S_eCtiO”S - CUDA Lazy Loading feature can speed up debugging
- No symbolic debugging times significantly (10x or more)
- Debugging optimized code can be a challenging experience _
* Check your compiler manual’ . Requires CUDA Toolkit 11.8+ and CUDA driver r520+
* Command line arguments can vary by compiler - Defers loading cubins until first use
- Pascal+ GPUs have an improved debugging experience . ngecially helpful for applications linked against large math
. . ibs
* Out of scope for J_Chls p.resentatlon » See for more info: https://docs.nvidia.com/cuda/cuda-c-
» Feature support listed in the CUDA-GDB manual programming-guide/index.html#lazy-loading

- CUDA-GDB uses TMPDIR to write temporary files
» Defaults to /tmp if TMPDIR unset
» Directory required to be writeable
* Needs to be the same for both application and CUDA-GDB

» HPC features of interest
» Mutli-GPU debugging is supported on same node

- Multiple CUDA-GDB instances can debug multiple
pProcesses running on same node

6 <ANVIDIA. I

https://docs.nvidia.com/deploy/mps/index.html#topic_3_3_6_1
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#lazy-loading

Overview: CUDA-GDB

Assume: familiarity with the CUDA programming model Physical

Device
CUDA capable GPUs

Exposes both logical and physical concepts to user

Logical Comprised of many SMs
Kernel SM
A function executed in parallel on the device Streaming multiprocessor
Executed as a grid of blocks of threads Executes block(s) in warp sized chunks
Specified by the <<<..>>> syntax Warp
Block Group of 32 lanes
Consists of threads - 1024 threads max L ane

3-dimensional coordinate
dim3 named blockIdx
Bounded by g ridDim CUDA thread CUDA core

Thread -> |

Smallest unit of work

Core that executes CUDA thread

: : : CUDA streaming
B-dlmeﬂSIOﬂa| COOFdlnate CUDA thread block Multiprocessor(SM)
dim3 named threadIdx Q 1] |

Bounded by blockDim
CUDA-capable GPU

il

CUDA kernel grid

7

NVIDIA.

Overview: CUDA-GDB

Terminology

- CUDA focus - CUDA focus (cont.)
* Most CUDA-GDB commands apply to a single thread in » Thread identifier (logical)
focus - Device identifier (physical)
* Focus can be host or device thread SM identifier (physical)

» Breakpoints or exceptions inside a CUDA kernel will
automatically switch to device focus

- Warp identifier (physical)

- Lane identifier (physical)

- Kernel identifier (logical) - Consider: two or more threads in the same warp execute
» Assigned sequentially by CUDA-GDB different instructions
- Unique across devices * Example: if else body
- Begins at index O - Active lane mask
. Grid identifier (logical) - Threads that are currently executing device code at Spc
- Assigned by CUDA - Divergent lane mask
- Unique per device » Threads that are waiting or have completed at Spc

* Begins at index 1
» CUDA dynamic parallelism can have negative grid offsets

- Block identifier (logical)

8 <ANVIDIA. I

Overview: CUDA-GDB

Device information

« Use info cuda commands to query CUDA enabled GPU activities

» Output from info cuda marked with a * indicates that the range contains the focused CUDA thread

9 <A NVIDIA I

Overview: CUDA-GDB

Device information

- info cuda kernels
» Displays the list of kernels

- info cuda blocks
- Displays the list of active blocks in the focused kernel

10 <ANVIDIA I

Overview: CUDA-GDB

Device information

- info cuda threads
» Displays the active threads in the focused kernel

» Obtain current focus with cuda commands

11 <A NVIDIA. I

Overview: CUDA-GDB
CUDA thread focus

 CUDA thread focus is controlled with cuda commands
» Sets focus to single CUDA thread

+ Some commands apply only to thread in focus
* Printing local or shared variables
* Printing reqisters
* Printing stack contents

- Examples
» Set focus to specified CUDA thread

» Set focus based on block and thread

+ Set focus based on kernel, dim3 block, dim3 thread

12 <ANVIDIA I

Overview: CUDA-GDB

Execution Control Basics

» Two ways to get control - Resume application execution

* Resumes both host and device threads
* Interrupt execution with ctrl-c

- attach - Application is executing

* No (cuda-gdb) prompt
foudatott) actaen as1230 - Ger1-C haits both host and device threads

- Exit debugger with quit
» Applications run are killed
- Applications attach are detached

13 <A NVIDIA I

* Single stepping

» Source vs assembly level
» Over vs into function calls

* Device behavior is like host
» Source level - following source line in kernel

Overview: CUDA-GDB
Stepping

+ Stepping behaviors (cont.)

» Stepping over barriers
- Example: __syncthreads()

* Resumes execution of all warps executing the same block

* Required to make forward progress past barrier

» Assembly level - following SASS instruction

Over functions

next

nexti

Into functions

step

stepl

» Stepping behaviors

» Single stepping advances every active thread in the warp
- Divergent inactive threads do not make forward progress

» kernel launch is asynchronous

» Cannot step into launched kernel from host code

» Set a breakpoint or use break_on_launch

14 <ANVIDIA. I

Overview: CUDA-GDB

Breakpoints

» Symbolic breakpoints » Kernel entry breakpoints

» Used to automatically break on kernel launches
» Good first step if you don’'t know where to start

* Line breakpoints

- Address breakpoints

» Conditional breakpoints
» Executed on the host every time breakpoint is hit
» Can be slow

15 <ANVIDIA. I

Overview: CUDA-GDB

Breakpoints

- info break
* View the status of breakpoints
» Breakpoints can be pending
» Breakpoints can be set at multiple addresses
» Breakpoint locations may change during runtime

» Breakpoint resolution

- Breakpoints inserted as pending until CUDA cubins are loaded

» Missing most CUDA symbols
* Host side shadow breakpoints can be inserted on named kernel
- Automatically resolved to device location after cubin load

* Missing line info
» Similar debugging experience to dlopen
- C++ templates may result in multiple breakpoint locations

16 <ANVIDIA. I

Overview: CUDA-GDB

Breakpoints

» Pending breakpoint examples

17 < NVIDIA.

Overview: CUDA-GDB

Breakpoints

+ Pending breakpoint examples (cont.)

18 <A NVIDIA. I

Overview: CUDA-GDB

Stacktrace

» Same commands as used in gdb
- where, bt, info stack

- Applies to the thread in focus

« CUDA threads have first source line of kernel as outermost frame

19 <ANVIDIA I

Overview: CUDA-GDB

Examining state

- info locals
- Displays local variables in the current stack frame
* Value printed or hint as to why the variable is not valid

20 <A NVIDIA. I

Overview: CUDA-GDB

Examining state

* print » Supply address space identifier when storage class is
- Read a source variable ambiguous
 Variable must be in scope ¢ @COde, @ConStant, @gene riC, @global,

@managed_global, @parameter, @shared,
@register, @local, @uniform_register

* Local or global scope

- info registers
* Inspect device registers

* Pseudo names
» SR<num>
» Reqular register
- set variable - SUR<num>
* Write to a source variable - Uniform register

- Address space must have write permissions »+ SUP<num>
» Uniform predicate

= SPC

* Program counter

» Unassignable

21 <A NVIDIA. I

Overview: CUDA-GDB
APl Errors

- set cuda api_failures
» Allows automatic checks of any CUDA driver or runtime API call

 Three modes
 hide

* Do not report error of any kind

- 1lgnore
- Emit warning, but continue execution
* Default

- stop
* Emit an error and stop execution

22 <ANVIDIA. I

Overview: CUDA-GDB

GPU device exceptions
Always caught
Fatal - unable to continue device execution

Most exceptions are precise
View address causing exception with Serrorpc

CUDA cluster (CUDA 11.8+) exceptions are imprecise
Use autostep to determine exact block and instruction causing error

CUDA_EXCEPTION_O through CUDA_EXCEPTION_T8
See link for table of exceptions and descriptions:

23 NVIDIA.

https://docs.nvidia.com/cuda/cuda-gdb/index.html#gpu-error-reporting

» Table of exception codes

Overview: CUDA-GDB

GPU Exceptions

Table 1. CUDA Exception Codes

Exception Code

Precision of the Error

Scope of the Error

Description

CUDA_EXCEPTION_© : "Device Unknown Exception” Unknown Global error on the GPU This 1s a global GPU error caused by the application which does not match any of the listed error codes
below. This should be a rare occurrence. Potentially, this may be due to Device Hardware Stack
overflows or a kernel generating an exception very close to its termination.

CUDA_EXCEPTION_1 : "Deprecated" Deprecated Deprecated This exception is deprecated and should be treated as CUDA_EXCEPTION_©.

CUDA_EXCEPTION_2 : "Lane User Stack Overflow" Precise Per lane/thread error This occurs when a thread exceeds its stack memory limit.

CUDA_EXCEPTION_3 "Device Hardware Stack Overflow" Precise Global error on the GPU This occurs when the application triggers a global hardware stack overflow. The main cause of this
error 1s large amounts of divergence in the presence of function calls.

CUDA_EXCEPTION_4 : "Warp Illegal Instruction” Precise Warp error This occurs when any thread within a warp has executed an illegal instruction.

CUDA_EXCEPTION_5 "Warp Out-of-range Address"” Precise Warp error This occurs when any thread within a warp accesses an address that is outside the valid range of local
or shared memory regions.

CUDA_EXCEPTION 6 : "Warp Misaligned Address" Precise Warp error This occurs when any thread within a warp accesses an address in the local or shared memory
segments that is not correctly aligned.

CUDA_EXCEPTION_ 7 : "Warp Invalid Address Space" Precise Warp error This occurs when any thread within a warp executes an instruction that accesses a memory space not
permitted for that instruction.

CUDA_EXCEPTION_ 8 : "Warp Invalid PC" Precise Warp error This occurs when any thread within a warp advances its PC beyond the 40-bit address space.

CUDA_EXCEPTION_9 : "Warp Hardware Stack Overflow" Precise Warp error This occurs when any thread in a warp triggers a hardware stack overflow. This should be a rare
occurrence.

CUDA_EXCEPTION_1© : "Device Illegal Address" Precise Global error This occurs when a thread accesses an illegal(out of bounds) global address. For increased precision,
use the 'set cuda memcheck’ option.

CUDA_EXCEPTION_ 11 : "Deprecated" Deprecated Deprecated This exception is deprecated and should be treated as CUDA_EXCEPTION ©.

CUDA_EXCEPTION_ 12 : "Warp Assert” Precise Per warp This occurs when any thread in the warp hits a device side assertion.

CUDA_EXCEPTION_13: "Deprecated" Deprecated Deprecated This exception 1s deprecated and should be treated as CUDA_EXCEPTION_©.

CUDA_EXCEPTION_14 : "Warp Illegal Address"” Precise Per warp This occurs when a thread accesses an illegal(out of bounds) global/local/shared address. For
increased precision, use the 'set cuda memcheck’ option.

CUDA_EXCEPTION_15 : "Invalid Managed Memory Access"” Precise Per host thread This occurs when a host thread attempts to access managed memory currently used by the GPU.

CUDA_EXCEPTION_16 : "Deprecated" Deprecated Deprecated This exception 1s deprecated and should be treated as CUDA_EXCEPTION_©.

CUDA_EXCEPTION_17 :

"Cluster Out-of-range Address”

Not precise

Per Cuda Cluster

This occurs when any thread within a block accesses an address that is outside the valid range of
shared memory regions belonging to the cluster.

CUDA_EXCEPTION_18 :

"Cluster Target Block Not Present”

Not precise

Per Cuda Cluster

This occurs when any thread within a block accesses another block that 1s outside the valid range of
blocks belonging to the cluster.

24

<A NVIDIA.

Overview: CUDA-GDB
GPU Exceptions

* GPU exception example

Overview: CUDA-GDB

Disassembly

- disassemble
* View disassembly of sass instructions
» Current pc prefixed with =>

* Instruction triggering exception (errorpc) prefixed with *>
 |f errorpc and pc match, prefixed with *=>

26 <ANVIDIA. I

Overview: CUDA-GDB

Coredumps

* GPU coredump support
» Disabled by default

» Set CUDA_ENABLE_COREDUMP_ON_EXCEPTION env var to 1
» Generated when a GPU exception is encountered

* GPU coredump name

« core_%t_%h_%p.nvcudmp
« %t is seconds since Epoch
* %h is hostname of system running the CUDA application

* %p is the process identifier of the CUDA application
- Written into the applications SPWD by default

» User defined with CUDA_COREDUMP_FILE env var
» Recognizes %t, %h, %p specifiers

27 <ANVIDIA. I

Overview: CUDA-GDB

Lightweight coredumps
Set CUDA_ENABLE_LIGHTWEIGHT_COREDUMP env var to 1

GPU coredumps will forego dumping memory

Local
Shared
Global

Size of coredump reduced significantly
Backtrace only

28 NVIDIA.

Overview: CUDA-GDB

Coredumps

» User induced GPU coredump
- Set CUDA_ENABLE_USER_TRIGGERED_COREDUMP env var to 1
* Opens a communication pipe for each CUDA process
» Write to pipe to induce a GPU coredump

* GPU corepipe name
« corepipe_%h_%p
* Same %t, %h, %p specifiers
+ User defined with CUDA_COREDUMP_PIPE env var

29 <ANVIDIA. I

Overview: CUDA-GDB

Coredumps

- target cudacore

» Loads GPU core dump into the debugger

» Can load both CPU and GPU coredumps
* CPU coredump is optional

» Examining coredumps with CUDA-GDB does not require a GPU be installed on the system

30 <A NVIDIA. I

Overview: Compute
Sanitizer

31 <ANVIDIA. I

Overview: Compute Sanitizer

Suite of dynamic analysis tools to catch common Supports CUDA/OptiX/OpenACC/OpenMP/etc
programming errors Replaces CUDA-MEMCHECK tool

Memcheck .
L Deprecated since CUDA 11.5
Report invalid memory accesses | | |
. Removed in next major version
Initcheck
e CUDA-GDB memcheck support removed
Report uninitialized memory reads
Sanitizer coredumps

Racecheck

Report invalid concurrent accesses to shared memory
Synccheck

Report invalid barrier usage

Non-interactive CLI based tool

Provides proactive debugging of CUDA kernels
Discover common programming errors up front

32 NVIDIA.

Overview: Compute Sanitizer
Quickstart

On Polaris
* Missing from PATH by module nvhpc/21.9 (default)

* Provided by path from module nvhpc/22.7 (non-default)

Recompile for debugging

* When compiling with nvcc:
* Provide —g for host (CPU) debugging
* Provide —G for device (GPU) debugging

+ Using —1ineinfo will allow checking of optimized code
* Reduced quality of output messages

Latest documentation: https://docs.nvidia.com/compute-sanitizer/index.htm!

Getting help: https://forums.developer.nvidia.com/c/development-tools/cuda-developer-tools/compute-sanitizer/

Compute sanitizer examples: https://github.com/NVIDIA/compute-sanitizer-samples

33 <A NVIDIA. I

https://docs.nvidia.com/compute-sanitizer/index.html
https://forums.developer.nvidia.com/c/development-tools/cuda-developer-tools/compute-sanitizer/
https://github.com/NVIDIA/compute-sanitizer-samples

Overview: Compute Sanitizer

Memcheck is used to report invalid memory accesses

Out of bounds or misaligned read/write/atomic accesses
Local, shared, or global memory

Stack overflows

Invalid system-scoped atomic accesses
NVLINK peer access

Reports CUDA API errors
Hardware exceptions
Invalid device-side malloc/free usage

Default tool for compute-sanitizer

34 NVIDIA.

Overview: Compute Sanitizer

Memcheck

__device__ void writeldx(int*x buffer)

{
buffer[threadldx.x] = threadldx.x;

}

__global__ void kernel(intx buffer)

{
writeIdx(buffer);

X

int main()

{
void* devBuf = nullptr;
cudaMalloc(&devBuf, 31 * sizeof(int));
kernel<<<1,32>>>(static_cast<int*>(devBuf));
return cudaDeviceSynchronize();

}

* When first error is encountered

» Destroy the CUDA context by default

» Controllable with args

- --destroy-on-device-
error=<context|kernel>

35 <A NVIDIA. I

Overview: Compute Sanitizer

Memcheck

» Report device side memory leaks
- --leak-check=full

__device__ void writeldx(int* buffer)

{
buffer[threadldx.x] = threadlIdx.x;

}

__global__ void kernel(intx buffer)

{
writeIdx(buffer);

}

int main()

{
voidx devBuf = nullptr;
cudaMalloc(&devBuf, 31 * sizeof(int));
kernel<<<1,32>>>(static_cast<int*>(devBuf));
return cudaDeviceSynchronize();

}

36 <A NVIDIA. I

Overview: Compute Sanitizer

Avoid false negative invalid memory accesses with
paddlng alloc1[0x400] No error reported

Adds a padding buffer at the end of each allocation

Ensures out-of-bounds access doesn't access adjacent
memory allocation

--padding=<bytes>

alloc1 alloc2

0x1000 0x1400

padd-
ing

alloc2

alloc1

Access to the padding area detected

alloc1[0x400] and reported

37 NVIDIA.

Overview: Compute Sanitizer

Initcheck is used to report uninitialized memory reads

Kernel
Memory passed to CUDA API calls

Global memory supported
Shared and local memory untracked

Can track peer GPU allocations

38 NVIDIA.

Overview: Compute Sanitizer

Initcheck

__global__ void kernel(intx buffer)

{
buffer[threadldx.x] = buffer[threadIdx.x] + threadIdx.x;

}

int main()

{
void* devBuf = nullptr;
cudaMalloc(&devBuf, 32 x sizeof(int));
kernel<<<1, 1>>>(static_cast<int*>(devBuf));
return cudaDeviceSynchronize();

X

39 <A NVIDIA. I

Overview: Compute Sanitizer

Initcheck
__global__ void kernel(intx buffer)
{
buffer[threadldx.x] = buffer[threadIdx.x] + threadIdx.x;
* Initcheck can track unused memory }
» Global memory allocated but never written int main()
- --track-unused-memory=yes {
void* devBuf = nullptr;
cudaMalloc(&devBuf, 32 x sizeof(int));
kernel<<<1, 1>>>(static_cast<int*>(devBuf));
return cudaDeviceSynchronize();
X

40 <A NVIDIA. I

Overview: Compute Sanitizer

Racecheck is used to detect potential race conditions

WAW, WAR, RAW accesses to shared memory

Lack of valid synchronization primitive
Warp/block level etc

Shared memory supported
Global and local memory untracked

Two reporting modes
Analysis
Aggregated report

Hazard
Every detected error with details
Verbose

41 NVIDIA.

Overview: Compute Sanitizer

Racecheck __global_
{

void kernel(intx buffer)

__Shared__ int shared[64];

shared[threadIdx.x]
buffer[threadIdx.x]

threadIldx.x;
shared[(threadIdx.x + 1) % 64];

}

int main()

{
voidx devBuf = nullptr;
cudaMalloc(&devBuf, 64 * sizeof(int));
kernel<<<1,64>>>(static_cast<int*>(devBuf));
return cudaDeviceSynchronize();

}

42 <A NVIDIA. I

Overview: Compute Sanitizer

Synccheck is used to detect invalid use of CUDA synchronization primitives

Behavior depends on architecture
Divergent threads in warp/block
Invalid barrier arguments

43 NVIDIA.

Overview: Compute Sanitizer
Synccheck

#include <cuda/barrier>

__global__ void kernel()

{
__shared__ cuda: :barrier<cuda::thread_scope_block> barrier;
1f (threadldx.x == 0)
{
init(&barrier, blockDim.x / 2);
}
__syncthreads();
auto token = barrier.arrive();
barrier.wait(std: :move(token));
}
int main()
{
kernel<<<1,32>>>():
return cudaDeviceSynchronize();
}

44 <ANVIDIA. I

Overview: Compute Sanitizer
Synccheck

45 <A NVIDIA.

Overview: Compute Sanitizer

Track all child processes Generate coredump on first error

--target-processes=all --generate-coredump=yes
Debug with CUDA-GDB

Unsupported with racecheck

Filter desired kernel launches to be tracked

--kernel-regex

--kernel-regex-exclude Support for custom memory allocators with NVIDIA

Tools Extension (NVTX
Track/ignore n kernel launches ools Extension {)

--launch-count=n
--launch-skip=n

Force stream synchronization every n launches
--force-synchronization-1limit

XML output for error reports
--xXml=yes

46 NVIDIA.

®

<A NVIDIA

Questions/Comments?

